Upper- and Lower-tropospheric Circulation Anomalies Associated with Interannual Variation of Pakistan Rainfall during Summer
This study investigated the large-scale circulation anomalies, in both the upper and lower troposphere, associated with the interannual variation of rainfall in Pakistan during summer, using the station observation data in this country and circulation data of the NCEP-NCAR reanalysis from 1981 to 20...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2020-11, Vol.37 (11), p.1179-1190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the large-scale circulation anomalies, in both the upper and lower troposphere, associated with the interannual variation of rainfall in Pakistan during summer, using the station observation data in this country and circulation data of the NCEP-NCAR reanalysis from 1981 to 2017. Results showed that the upper- and lower-tropospheric circulation anomalies associated with monthly rainfall variability exhibit similar features from June to August, so analyses were performed on June–August circulation and Pakistan rainfall data. The analyzed results indicated that summer rainfall in Pakistan is enhanced when there is an anticyclonic anomaly to the northwest of Pakistan in the upper troposphere and easterly anomalies along the southern foothills of the Himalayas in the lower troposphere, and vice versa. These upper- and lower-tropospheric circulation anomalies were found to be related, but show unique features. The upper-tropospheric anticyclonic anomaly is closely related to the Silk Road Pattern along the Asian westerly jet, while the lower-tropospheric easterly anomalies are related to the cyclonic anomaly to the south of Pakistan, i.e., intensified South Asian monsoon trough. The results presented here suggest that the interannual variability of summer rainfall in Pakistan is a combined result of upper- and lower-tropospheric circulation anomalies, and of extratropical and tropical circulation anomalies. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-020-0137-0 |