On the Neighbour Sum Distinguishing Index of Graphs with Bounded Maximum Average Degree
A proper edge k -colouring of a graph G = ( V , E ) is an assignment c : E → { 1 , 2 , … , k } of colours to the edges of the graph such that no two adjacent edges are associated with the same colour. A neighbour sum distinguishing edge k -colouring, or nsd k -colouring for short, is a proper edge k...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2017-11, Vol.33 (6), p.1459-1471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A proper edge
k
-colouring of a graph
G
=
(
V
,
E
)
is an assignment
c
:
E
→
{
1
,
2
,
…
,
k
}
of colours to the edges of the graph such that no two adjacent edges are associated with the same colour. A neighbour sum distinguishing edge
k
-colouring, or nsd
k
-colouring for short, is a proper edge
k
-colouring such that
∑
e
∋
u
c
(
e
)
≠
∑
e
∋
v
c
(
e
)
for every edge
uv
of
G
. We denote by
χ
Σ
′
(
G
)
the neighbour sum distinguishing index of
G
, which is the least integer
k
such that an nsd
k
-colouring of
G
exists. By definition at least maximum degree,
Δ
(
G
)
colours are needed for this goal. In this paper we prove that
χ
Σ
′
(
G
)
≤
Δ
(
G
)
+
1
for any graph
G
without isolated edges, with
mad
(
G
)
<
3
and
Δ
(
G
)
≥
6
. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-017-1822-3 |