Multipliers of Hardy Spaces Associated with Generalized Hermite Expansions
The purpose of this paper is to study coefficient multipliers of the Hardy spaces H p ( R ) associated with Hermite expansions. The main results are that, if a sequence { λ n } n = 0 ∞ satisfies the condition ∑ k = n 2 n | λ k | q = O n q 2 7 6 - 1 p , then { λ n } is a multiplier of H p ( R ) into...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2014-06, Vol.39 (3), p.517-540 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to study coefficient multipliers of the Hardy spaces
H
p
(
R
)
associated with Hermite expansions. The main results are that, if a sequence
{
λ
n
}
n
=
0
∞
satisfies the condition
∑
k
=
n
2
n
|
λ
k
|
q
=
O
n
q
2
7
6
-
1
p
, then
{
λ
n
}
is a multiplier of
H
p
(
R
)
into the sequence space
ℓ
q
associated with Hermite expansions for (i)
p
=
1
,
2
≤
q
<
∞
; (ii)
0
<
p
<
1
≤
q
<
∞
. As a consequence, a Paley-type inequality is obtained; that is, for a Hadamard sequence
{
n
k
}
satisfying
n
k
+
1
/
n
k
≥
ρ
>
1
and for
f
∈
H
p
(
R
)
,
0
<
p
≤
1
, the coefficients
a
n
(
f
)
of its Hermite expansion satisfy
∑
k
=
1
∞
n
k
7
6
-
1
p
|
a
n
k
(
f
)
|
2
<
∞
. The results in the paper are proved in a more general case, that is, for the generalized Hermite functions which are defined by
H
2
k
(
λ
)
(
x
)
=
c
k
L
k
(
λ
-
1
/
2
)
(
x
2
)
e
-
x
2
2
|
x
|
λ
,
H
2
k
-
1
(
λ
)
(
x
)
=
c
k
k
-
1
/
2
x
L
k
-
1
(
λ
+
1
/
2
)
(
x
2
)
e
-
x
2
2
|
x
|
λ
, where
c
k
=
2
k
!
/
Γ
(
k
+
λ
+
1
/
2
)
1
/
2
. Note that
H
n
(
x
)
=
H
n
(
0
)
(
x
)
(
n
≥
0
) are the usual Hermite functions. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-014-9230-x |