Bispectrality of Multivariable Racah–Wilson Polynomials
We construct a commutative algebra of difference operators in ℝ p , depending on p +3 parameters, which is diagonalized by the multivariable Racah polynomials R p ( n ; x ) considered by Tratnik (J. Math. Phys. 32(9):2337–2342, 1991 ). It is shown that for specific values of the variables x =( x 1...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2010-06, Vol.31 (3), p.417-457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a commutative algebra
of difference operators in ℝ
p
, depending on
p
+3 parameters, which is diagonalized by the multivariable Racah polynomials
R
p
(
n
;
x
) considered by Tratnik (J. Math. Phys. 32(9):2337–2342,
1991
). It is shown that for specific values of the variables
x
=(
x
1
,
x
2
,…,
x
p
) there is a hidden duality between
n
and
x
. Analytic continuation allows us to construct another commutative algebra
in the variables
n
=(
n
1
,
n
2
,…,
n
p
) which is also diagonalized by
R
p
(
n
;
x
). Thus,
R
p
(
n
;
x
) solve a multivariable discrete bispectral problem in the sense of Duistermaat and Grünbaum (Commun. Math. Phys. 103(2):177–240,
1986
). Since a change of the variables and the parameters in the Racah polynomials gives the multivariable Wilson polynomials (Tratnik in J. Math. Phys. 32(8):2065–2073,
1991
), this change of variables and parameters in
and
leads to bispectral commutative algebras for the multivariable Wilson polynomials. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-009-9045-3 |