Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV

In hemodynamics, the inherent intermittency of two-phase cellular-level flow has received little attention. Unsteadiness is reported and quantified for the first time in the literature using a combination of fluorescent dye labeling, time-resolved scanning confocal microscopy, and micro-particle ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2011-04, Vol.50 (4), p.887-904
Hauptverfasser: Patrick, Michael J., Chen, Chia-Yuan, Frakes, David H., Dur, Onur, Pekkan, Kerem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In hemodynamics, the inherent intermittency of two-phase cellular-level flow has received little attention. Unsteadiness is reported and quantified for the first time in the literature using a combination of fluorescent dye labeling, time-resolved scanning confocal microscopy, and micro-particle image velocimetry (μPIV). The near-wall red blood cell (RBC) motion of physiologic high-hematocrit blood in a rectangular microchannel was investigated under pressure-driven flow. Intermittent flow was associated with (1) the stretching of RBCs as they passed through RBC clusters with twisting motions; (2) external flow through local obstacles; and (3) transitionary rouleaux formations. Velocity profiles are presented for these cases. Unsteady flow clustered in local regions. Extra-cellular fluid flow generated by individual RBCs was examined using submicron fluorescent microspheres. The capabilities of confocal μPIV post-processing were verified using synthetic raw PIV data for validation. Cellular interactions and oscillating velocity profiles are presented, and 3D data are made available for computational model validation.
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-010-0943-8