Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers

The mid-infrared part of the electromagnetic spectrum is the so-called molecular fingerprint region because gases have tell-tale absorption features associated with molecular rovibrations. This region can be for instance exploited to detect small traces of environmental and toxic vapors in atmospher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2010-07, Vol.100 (1), p.3-8
Hauptverfasser: Bernhardt, B., Sorokin, E., Jacquet, P., Thon, R., Becker, T., Sorokina, I. T., Picqué, N., Hänsch, T. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mid-infrared part of the electromagnetic spectrum is the so-called molecular fingerprint region because gases have tell-tale absorption features associated with molecular rovibrations. This region can be for instance exploited to detect small traces of environmental and toxic vapors in atmospheric and industrial applications. Novel Fourier-transform spectroscopy without moving parts, based on time-domain interferences between two comb sources, can in particular benefit optical diagnostics and precision spectroscopy. To date, high-resolution and -sensitivity proof-of-principle experiments have only been reported in the near-infrared region where frequency-comb oscillators are conveniently available. However, as most of the molecular transitions in this region are due to weak overtone bands, this spectral domain is not ideal for sensitive and rapid detection. Here we present a proof-of-principle experiment of frequency-comb Fourier-transform spectroscopy with two Cr 2+ :ZnSe femtosecond oscillators directly emitting in the 2.4 μm mid-infrared region. The acetylene absorption spectrum in the region of the band, extending from 2370 to 2525 nm, could be recorded within a 10 μs acquisition time without averaging with 12 GHz resolution.
ISSN:0946-2171
1432-0649
DOI:10.1007/s00340-010-4080-0