Characterization of an Indian sword: classic and noninvasive methods of investigation in comparison

The evolution of metallurgy in history is one of the most interesting topics in Archaeometry. The production of steel and its forging methods to make tools and weapons are topics of great interest in the field of the history of metallurgy. In the production of weapons, we find almost always the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2015-04, Vol.119 (1), p.97-105
Hauptverfasser: Barzagli, E., Grazzi, F., Williams, A., Edge, D., Scherillo, A., Kelleher, J., Zoppi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of metallurgy in history is one of the most interesting topics in Archaeometry. The production of steel and its forging methods to make tools and weapons are topics of great interest in the field of the history of metallurgy. In the production of weapons, we find almost always the highest level of technology. These were generally produced by skilled craftsmen who used the best quality materials available. Indian swords are an outstanding example in this field and one of the most interesting classes of objects for the study of the evolution of metallurgy. This work presents the study of a Shamsheer (a sword with a curved blade with single edge) made available by the Wallace Collection in London. The purpose of this study was to determine the composition, the microstructure, the level and the direction of residual strain and their distribution in the blade. We have used two different approaches: the classical one (metallography) and a nondestructive technique (neutron diffraction): In this way, we can test differences and complementarities of these two techniques. To obtain a good characterization of artifacts studied by traditional analytical methods, an invasive approach is required. However, the most ancient objects are scarce in number, and the most interesting ones are usually in an excellent state of conservation, so it is unthinkable to apply techniques with a destructive approach. The analysis of blades that has been performed by metallographic microscopy has demonstrated the specificity of the production of this type of steel. However, metallographic analysis can give only limited information about the structural characteristics of these artifacts of high quality, and it is limited to the sampled areas. The best approach for nondestructive analysis is therefore to use neutron techniques.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-014-8968-0