A comparative study of DRL-lift and lift on integrated polyisobutylene polymer matrices
This paper presents a comparative study of polymer pixel on sensors obtained by Laser Induced Forward Transfer (LIFT) assisted by a triazene polymer as Dynamic Release Layer (DRL). Polyisobutylene (PIB) was selected as model for chemoselective polymers which could be used as hydrogen-bond acidic pol...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2010-11, Vol.101 (2), p.429-434 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a comparative study of polymer pixel on sensors obtained by Laser Induced Forward Transfer (LIFT) assisted by a triazene polymer as Dynamic Release Layer (DRL). Polyisobutylene (PIB) was selected as model for chemoselective polymers which could be used as hydrogen-bond acidic polymer for vapor sensors.
PIB films deposited on fused silica, respectively, on triazene polymer coated fused silica substrates were used as targets. Both targets were prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The parameters related to a regular, well-defined transfer were analyzed and compared for the substrates with and without the DRL. The morphological characterization of the transferred PIB was performed by Atomic Force Microscopy (AFM), Optical Microscopy, and Scanning Electron Microscopy (SEM).
It was found that a minimal thickness of the dynamic release layer, i.e. 100 nm is required to protect the sensitive PIB polymer in a clean laser transfer process. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-010-5826-6 |