The Kolmogorov–Obukhov Statistical Theory of Turbulence

In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2013-08, Vol.23 (4), p.657-688
1. Verfasser: Birnir, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier–Stokes equation. The additive noise in the stochastic Navier–Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov–Obukhov 1962 scaling hypothesis with the She–Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier–Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov–Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-012-9164-z