Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River basins, Southern India

The Palar and Cheyyar River Basins in Tamil Nadu state of Southern India are characterised by different geological formations, and groundwater is the major source for domestic, agricultural and other water-related activities. Hydrogeochemical studies were carried out in this area with the objective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2004-07, Vol.46 (1), p.47-61
Hauptverfasser: RAJMOHAN, N, ELANGO, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Palar and Cheyyar River Basins in Tamil Nadu state of Southern India are characterised by different geological formations, and groundwater is the major source for domestic, agricultural and other water-related activities. Hydrogeochemical studies were carried out in this area with the objective of identifying the geochemical processes and their relation to groundwater quality. Groundwater samples were collected once a month from 43 groundwater wells in this area from January 1998 to July 1999. Sampling procedures and chemical analysis were carried out as per the standard methods. Chemical data are used for mathematical calculations and graphical plots to understand the chemical process and its relation to the groundwater quality. The chemical composition of groundwater in the central part of the study area mainly depends on the recharge from lakes and the river, which is explained by a mixing mechanism. In addition, weathering of silicate minerals controls the concentration of major ions such as sodium, calcium, magnesium and potassium in the groundwater of this area. Further, the activity ratios indicate that the groundwater is in equilibrium with kaolinite, smectite and montmorrillonite. The reverse ion exchange process controls the concentration of calcium, magnesium and sodium in hard rock formations, and dissolution of carbonate minerals and accessory minerals is the source of Ca and Mg, in addition to cation exchange in the sedimentary formations. In general, the chemical composition of the groundwater in this area is influenced by rock-water interaction, dissolution and deposition of carbonate and silicate minerals, ion exchange, and surface water interactions.[PUBLICATION ABSTRACT]
ISSN:0943-0105
1866-6280
1432-0495
1866-6299
DOI:10.1007/s00254-004-1012-5