Synergistic effect of Lactobacillus gasseri and Cudrania tricuspidata on the modulation of body weight and gut microbiota structure in diet-induced obese mice

High-fat diet (HFD)-induced obesity has been associated with alteration of gut microbiota alongside body weight gain. In this study, the synbiotic effect of Lactobacillus gasseri 505 (LG) and Cudrania tricuspidata (CT) in HFD-induced mice was revealed. After feeding mice with high-fat diet for 10 we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-07, Vol.104 (14), p.6273-6285
Hauptverfasser: Oh, Ju Kyoung, Amoranto, Mia Beatriz C., Oh, Nam Su, Kim, Sejeong, Lee, Ji Young, Oh, Ye Na, Shin, Yong Kook, Yoon, Yohan, Kang, Dae-Kyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-fat diet (HFD)-induced obesity has been associated with alteration of gut microbiota alongside body weight gain. In this study, the synbiotic effect of Lactobacillus gasseri 505 (LG) and Cudrania tricuspidata (CT) in HFD-induced mice was revealed. After feeding mice with high-fat diet for 10 weeks, combination of LG and CT (LG_CT) exhibited the greatest reduction in the final body weight (11.9%). Moreover, microbial diversity significantly increased, and Principal Coordinate Analysis (PCoA) revealed that the LG_CT group showed closer cluster to NORM. At phylum level, the Firmicutes/Bacteroidetes (F/B) ratio increased in HFD, and the abundance of Bacteroidetes was restored by LG and CT. At genus level, notable changes in Alistipes , Desulfovibrio , Bilophila , and Acetatifactor were observed. Helicobacter elevated to 16.2% in HFD and diminished dramatically to less than 0.01% in LG and/or CT. At species level, L. gasseri increased after the administration of LG (0.54%) and LG_CT (1.14%), suggesting that LG may grow and colonize in the gut and CT can function as a prebiotic. Finally, functional analysis revealed certain metabolic factors correlated with body weight and gut microbiota. This study serves as a potential basis for the application of L. gasseri 505 and C. tricuspidata in the prevention and treatment of diet-induced obesity. Key Points • Combination of L. gasseri (LG) and C. tricuspidata (CT) reduced body weight gain. • Microbial diversity significantly increased in LG_CT treatment. • Abundance of microorganisms involved with leanness increased in LG, CT, and LG_CT. • Body weight is associated with some metabolic functions of gut microbiota.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-020-10634-8