M-systems and scattering systems of semigroup actions

We prove that: (1) an action of a semigroup S on a compact metric space X is an M -system if and only if N ( x ,  U ) is a piecewise syndetic set for every transitive point x in X and every neighborhood U of x ; (2) an action of a monoid S on a compact metric space X for which every s ∈ S is a surje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2015-12, Vol.91 (3), p.699-717
Hauptverfasser: Wang, Huoyun, Chen, Zhijing, Fu, Human
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that: (1) an action of a semigroup S on a compact metric space X is an M -system if and only if N ( x ,  U ) is a piecewise syndetic set for every transitive point x in X and every neighborhood U of x ; (2) an action of a monoid S on a compact metric space X for which every s ∈ S is a surjective map from X onto itself is scattering if and only if N ( U ,  V ) is a set of topological recurrence for every pair of non-empty open subsets U ,  V in X . As applications, we show that: (1) if an action of a commutative semigroup S on a compact metric space X is an M -system then the system is finitely sensitive; (2) an action of a commutative semigroup S on a compact metric space X is a scattering system if and only if it is disjoint with any M -system.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-015-9736-y