M-systems and scattering systems of semigroup actions
We prove that: (1) an action of a semigroup S on a compact metric space X is an M -system if and only if N ( x , U ) is a piecewise syndetic set for every transitive point x in X and every neighborhood U of x ; (2) an action of a monoid S on a compact metric space X for which every s ∈ S is a surje...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2015-12, Vol.91 (3), p.699-717 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that: (1) an action of a semigroup
S
on a compact metric space
X
is an
M
-system if and only if
N
(
x
,
U
) is a piecewise syndetic set for every transitive point
x
in
X
and every neighborhood
U
of
x
; (2) an action of a monoid
S
on a compact metric space
X
for which every
s
∈
S
is a surjective map from
X
onto itself is scattering if and only if
N
(
U
,
V
) is a set of topological recurrence for every pair of non-empty open subsets
U
,
V
in
X
. As applications, we show that: (1) if an action of a commutative semigroup
S
on a compact metric space
X
is an
M
-system then the system is finitely sensitive; (2) an action of a commutative semigroup
S
on a compact metric space
X
is a scattering system if and only if it is disjoint with any
M
-system. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-015-9736-y |