Modular retractions of numerical semigroups
Let S be a numerical semigroup, let m be a nonzero element of S , and let a be a nonnegative integer. We denote (where as mod m is the remainder of the division of as by m ). In this paper we characterize the pairs ( a , m ) such that is a numerical semigroup. In this way, if we have a pair ( a , m...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2013-12, Vol.87 (3), p.553-568 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
be a numerical semigroup, let
m
be a nonzero element of
S
, and let
a
be a nonnegative integer. We denote
(where
as
mod
m
is the remainder of the division of
as
by
m
). In this paper we characterize the pairs (
a
,
m
) such that
is a numerical semigroup. In this way, if we have a pair (
a
,
m
) with such characteristics, then we can reduce the problem of computing the genus of
S
=〈
n
1
,…,
n
p
〉 to computing the genus of a “smaller” numerical semigroup 〈
n
1
−
an
1
mod
m
,…,
n
p
−
an
p
mod
m
〉. This reduction is also useful for estimating other important invariants of
S
such as the Frobenius number and the type. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-013-9481-z |