Gaussian upper bounds for heat kernels of second order complex elliptic operators with unbounded diffusion coefficients on arbitrary domains

In this paper we obtain Gaussian upper bounds for the integral kernel of the semigroup associated with second order elliptic differential operators with complex unbounded measurable coefficients defined in a domain Ω of ℝ N and subject to various boundary conditions. In contrast to the previous lite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2013-10, Vol.87 (2), p.437-466
Hauptverfasser: Mourou, Sami, Selmi, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain Gaussian upper bounds for the integral kernel of the semigroup associated with second order elliptic differential operators with complex unbounded measurable coefficients defined in a domain Ω of ℝ N and subject to various boundary conditions. In contrast to the previous literature the diffusions coefficients are not required to be bounded or regular. A new approach based on Davies-Gaffney estimates is used. It is applied to a number of examples, including degenerate elliptic operators arising in Financial Mathematics and generalized Ornstein-Uhlenbeck operators with potentials.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-013-9480-0