Rectangular group congruences on a semigroup
We study rectangular group congruences on an arbitrary semigroup. Some of our results are an extension of the results obtained by Masat (Proc. Am. Math. Soc. 50:107–114, 1975 ). We show that each rectangular group congruence on a semigroup S is the intersection of a group congruence and a matrix con...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2013-08, Vol.87 (1), p.120-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study rectangular group congruences on an arbitrary semigroup. Some of our results are an extension of the results obtained by Masat (Proc. Am. Math. Soc. 50:107–114,
1975
). We show that each rectangular group congruence on a semigroup
S
is the intersection of a group congruence and a matrix congruence and vice versa, and this expression is unique, when
S
is
E
-inversive. Finally, we prove that every rectangular group congruence on an
E
-inversive semigroup is uniquely determined by its kernel and trace. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-012-9426-y |