Rectangular group congruences on a semigroup

We study rectangular group congruences on an arbitrary semigroup. Some of our results are an extension of the results obtained by Masat (Proc. Am. Math. Soc. 50:107–114, 1975 ). We show that each rectangular group congruence on a semigroup S is the intersection of a group congruence and a matrix con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2013-08, Vol.87 (1), p.120-128
1. Verfasser: Gigoń, Roman S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study rectangular group congruences on an arbitrary semigroup. Some of our results are an extension of the results obtained by Masat (Proc. Am. Math. Soc. 50:107–114, 1975 ). We show that each rectangular group congruence on a semigroup S is the intersection of a group congruence and a matrix congruence and vice versa, and this expression is unique, when S is E -inversive. Finally, we prove that every rectangular group congruence on an E -inversive semigroup is uniquely determined by its kernel and trace.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-012-9426-y