On some homotopical and homological properties of monoid presentations
If a monoid S is given by some finite complete presentation ℘, we construct inductively a chain of CW-complexes such that Δ n has dimension n , for every 2≤ m ≤ n , the m -skeleton of Δ n is Δ m , and p m are critical ( m +1)-cells with 1≤ m ≤ n −2. For every 2≤ m ≤ n −1, the following is an exact s...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2008-05, Vol.76 (3), p.427-468 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If a monoid
S
is given by some finite complete presentation ℘, we construct inductively a chain of CW-complexes
such that Δ
n
has dimension
n
, for every 2≤
m
≤
n
, the
m
-skeleton of Δ
n
is Δ
m
, and
p
m
are critical (
m
+1)-cells with 1≤
m
≤
n
−2. For every 2≤
m
≤
n
−1, the following is an exact sequence of (ℤ
S
,ℤ
S
)-bimodules
where
if
m
=2. We then use these sequences to obtain a free finitely generated bimodule partial resolution of ℤ
S
. Also we show that for groups properties FDT and FHT coincide. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-007-9037-1 |