Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators
A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first r...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2016-01, Vol.52 (1), p.21-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first row and between the first and second rows of the tube bundles. The diameter of the second row of the tubes is chosen smaller than those of the first and third. A comprehensive study on the effects of various geometrical parameters such as transverse and longitudinal positions of VGs, length and height of VGs and angle of attack of the delta winglets is performed to augment heat transfer. Based on this study the best values of these design parameters are determined. The results showed that the best model increases the convective heat transfer ratio and thermal performance factor about 59 and 43 %, respectively, in compare with the geometry without VG. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-015-1705-1 |