Experimental investigation of integral and local flow field properties on rotating porous disc
Flow field through rotating porous disc was investigated with experimental fluid dynamics and compared with computational fluid dynamics. Open cell aluminum metal foam with 88% porosity was used. On rotating porous disc, integral measurements of static pressure difference in dependence of air volume...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2011-06, Vol.47 (6), p.679-690 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flow field through rotating porous disc was investigated with experimental fluid dynamics and compared with computational fluid dynamics. Open cell aluminum metal foam with 88% porosity was used. On rotating porous disc, integral measurements of static pressure difference in dependence of air volume flow rate were performed. Local measurements of velocity profiles close to disc circumference were performed with hot-wire anemometry. The airflow visualization method using smoke generator and digital camera was performed. Flow structures through porous disc were visualized at three different air volume flow rates. Numerical simulation of homogenous rotating porous disc was performed. Experimental and numerical results were compared. The results showed appropriate comparison of integral and local properties. The presented experimental approach can be used for the investigation and understanding of flow field phenomena on rotating porous materials. The proposed conclusions can be applied for variable applications on rotating porous materials. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-011-0760-5 |