Large tilting modules and representation type
We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra R and apply our results to the (infinite dimensional) tilting module L that generates all modules without preprojective direct summands. We show that the behaviour of L over its e...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2010-07, Vol.132 (3-4), p.483-499 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra
R
and apply our results to the (infinite dimensional) tilting module
L
that generates all modules without preprojective direct summands. We show that the behaviour of
L
over its endomorphism ring determines the representation type of
R
. A similar result holds true for the (infinite dimensional) tilting module
W
that generates the divisible modules. Finally, we extend to the wild case some results on Baer modules and torsion-free modules proven in Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Baer and Mittag-Leffler modules over tame hereditary algebras. Math. Z.
265
, 1–19 (2010) for tame hereditary algebras. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-010-0356-2 |