Large tilting modules and representation type

We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra R and apply our results to the (infinite dimensional) tilting module L that generates all modules without preprojective direct summands. We show that the behaviour of L over its e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2010-07, Vol.132 (3-4), p.483-499
Hauptverfasser: Angeleri Hügel, Lidia, Kerner, Otto, Trlifaj, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra R and apply our results to the (infinite dimensional) tilting module L that generates all modules without preprojective direct summands. We show that the behaviour of L over its endomorphism ring determines the representation type of R . A similar result holds true for the (infinite dimensional) tilting module W that generates the divisible modules. Finally, we extend to the wild case some results on Baer modules and torsion-free modules proven in Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Baer and Mittag-Leffler modules over tame hereditary algebras. Math. Z. 265 , 1–19 (2010) for tame hereditary algebras.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-010-0356-2