Maximal automorphisms of Calabi-Yau manifolds versus maximally unipotent monodromy
Let α be an automorphism of the local universal deformation of a Calabi-Yau 3-manifold X , which does not act by ±id on . We show that the bundle in the VHS of each maximal family containing X is constant in this case. Thus X cannot be a fiber of a maximal family with maximally unipotent monodromy,...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2010-03, Vol.131 (3-4), p.459-474 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
α
be an automorphism of the local universal deformation of a Calabi-Yau 3-manifold
X
, which does not act by ±id on
. We show that the bundle
in the
VHS
of each maximal family containing
X
is constant in this case. Thus
X
cannot be a fiber of a maximal family with maximally unipotent monodromy, if such an automorphism
α
exists. Moreover we classify the possible actions of
α
on
, construct examples and show that the period domain is a complex ball containing a dense set of
CM
points given by a Shimura datum in this case. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-009-0329-5 |