Maximal automorphisms of Calabi-Yau manifolds versus maximally unipotent monodromy

Let α be an automorphism of the local universal deformation of a Calabi-Yau 3-manifold X , which does not act by ±id on . We show that the bundle in the VHS of each maximal family containing X is constant in this case. Thus X cannot be a fiber of a maximal family with maximally unipotent monodromy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2010-03, Vol.131 (3-4), p.459-474
1. Verfasser: Rohde, Jan Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let α be an automorphism of the local universal deformation of a Calabi-Yau 3-manifold X , which does not act by ±id on . We show that the bundle in the VHS of each maximal family containing X is constant in this case. Thus X cannot be a fiber of a maximal family with maximally unipotent monodromy, if such an automorphism α exists. Moreover we classify the possible actions of α on , construct examples and show that the period domain is a complex ball containing a dense set of CM points given by a Shimura datum in this case.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-009-0329-5