Fano 4-folds with $b_{2}>12$ are products of surfaces
Let $X$ X be a smooth, complex Fano 4-fold, and $\rho _{X}$ ρ X its Picard number. We show that if $\rho _{X}>12$ ρ X > 12 , then $X$ X is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions $f\colon X\to Y$ f : X → Y such that $\dim f(\op...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2024-04, Vol.236 (1), p.1-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$X$
X
be a smooth, complex Fano 4-fold, and
$\rho _{X}$
ρ
X
its Picard number. We show that if
$\rho _{X}>12$
ρ
X
>
12
, then
$X$
X
is a product of del Pezzo surfaces. The proof relies on a careful study of divisorial elementary contractions
$f\colon X\to Y$
f
:
X
→
Y
such that
$\dim f(\operatorname{Exc}(f))=2$
dim
f
(
Exc
(
f
)
)
=
2
, together with the author’s previous work on Fano 4-folds. In particular, given
$f\colon X\to Y$
f
:
X
→
Y
as above, under suitable assumptions we show that
$S:=f(\operatorname{Exc}(f))$
S
:
=
f
(
Exc
(
f
)
)
is a smooth del Pezzo surface with
$-K_{S}=(-K_{Y})_{|S}$
−
K
S
=
(
−
K
Y
)
|
S
. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-024-01236-6 |