Arithmetic representations of fundamental groups I
Let X be a normal algebraic variety over a finitely generated field k of characteristic zero, and let ℓ be a prime. Say that a continuous ℓ -adic representation ρ of π 1 e ´ t ( X k ¯ ) is arithmetic if there exists a finite extension k ′ of k , and a representation ρ ~ of π 1 e ´ t ( X k ′ ) , with...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2018-11, Vol.214 (2), p.605-639 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a normal algebraic variety over a finitely generated field
k
of characteristic zero, and let
ℓ
be a prime. Say that a continuous
ℓ
-adic representation
ρ
of
π
1
e
´
t
(
X
k
¯
)
is
arithmetic
if there exists a finite extension
k
′
of
k
, and a representation
ρ
~
of
π
1
e
´
t
(
X
k
′
)
, with
ρ
a subquotient of
ρ
~
|
π
1
(
X
k
¯
)
. We show that there exists an integer
N
=
N
(
X
,
ℓ
)
such that every nontrivial, semisimple arithmetic representation of
π
1
e
´
t
(
X
k
¯
)
is nontrivial mod
ℓ
N
. As a corollary, we prove that any nontrivial
ℓ
-adic representation of
π
1
e
´
t
(
X
k
¯
)
which
arises from geometry
is nontrivial mod
ℓ
N
. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-018-0810-4 |