Minimal hypersurfaces with bounded index
We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold ( M n , g ) , 3 ≤ n ≤ 7 , can degenerate. Loosely speaking,...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2017-09, Vol.209 (3), p.617-664 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold
(
M
n
,
g
)
,
3
≤
n
≤
7
, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embedded stable minimal hypersurfaces, up to controlled errors. Several compactness/finiteness theorems follow from our local picture. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-017-0717-5 |