Fractional Susceptibility Functions for the Quadratic Family: Misiurewicz–Thurston Parameters
For f t ( x ) = t - x 2 the quadratic family, we define the fractional susceptibility function Ψ ϕ , t 0 Ω ( η , z ) of f t , associated to a C 1 observable ϕ at a stochastic parameter t 0 . We also define an approximate, “frozen,” fractional susceptibility function Ψ ϕ , t 0 fr ( η , z ) such that...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-08, Vol.385 (3), p.1957-2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
f
t
(
x
)
=
t
-
x
2
the quadratic family, we define the fractional susceptibility function
Ψ
ϕ
,
t
0
Ω
(
η
,
z
)
of
f
t
, associated to a
C
1
observable
ϕ
at a stochastic parameter
t
0
. We also define an approximate, “frozen,” fractional susceptibility function
Ψ
ϕ
,
t
0
fr
(
η
,
z
)
such that
lim
η
→
1
Ψ
ϕ
,
t
0
fr
(
η
,
z
)
is the susceptibility function
Ψ
ϕ
,
t
0
(
z
)
studied by Ruelle. If
t
0
is Misiurewicz–Thurston, we show that
Ψ
ϕ
,
t
0
fr
(
1
/
2
,
z
)
has a pole at
z
=
1
for generic
ϕ
if
J
1
/
2
(
t
0
)
≠
0
, where
J
η
(
t
)
=
∑
k
=
0
∞
sgn
(
D
f
t
k
(
c
1
)
)
|
D
f
t
k
(
c
1
)
|
-
η
, with
c
1
=
t
the critical value of
f
t
. We introduce “Whitney” fractional integrals
I
η
,
Ω
and derivatives
M
η
,
Ω
on suitable sets
Ω
. We formulate conjectures on
Ψ
ϕ
,
t
0
Ω
(
η
,
z
)
and
J
η
(
t
)
, supported by our results on
M
η
,
Ω
and
Ψ
ϕ
,
t
0
fr
(
1
/
2
,
z
)
, for the former, and numerical experiments, for the latter. In particular, we expect that
Ψ
ϕ
,
t
0
Ω
(
1
/
2
,
z
)
is singular at
z
=
1
for Collet–Eckmann
t
0
and generic
ϕ
. We view this work as a step towards the resolution of the paradox that
Ψ
ϕ
,
t
0
(
z
)
is holomorphic at
z
=
1
for Misiurewicz–Thurston
f
t
0
(Jiang and Ruelle in Nonlinearity 18:2447–2453, 2005, Ruelle in Commun Math Phys 258:445–453, 2005), despite lack of linear response (Baladi et al. in Invent Math 201:773–844, 2015). |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-04015-z |