Satisfiability Threshold for Random Regular nae-sat

We consider the random regular k - nae- sat problem with n variables, each appearing in exactly d clauses. For all k exceeding an absolute constant k 0 , we establish explicitly the satisfiability threshold d ⋆ ≡ d ⋆ ( k ) . We prove that for d < d ⋆ the problem is satisfiable with high probabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2016-01, Vol.341 (2), p.435-489
Hauptverfasser: Ding, Jian, Sly, Allan, Sun, Nike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the random regular k - nae- sat problem with n variables, each appearing in exactly d clauses. For all k exceeding an absolute constant k 0 , we establish explicitly the satisfiability threshold d ⋆ ≡ d ⋆ ( k ) . We prove that for d < d ⋆ the problem is satisfiable with high probability, while for d > d ⋆ the problem is unsatisfiable with high probability. If the threshold d ⋆ lands exactly on an integer, we show that the problem is satisfiable with probability bounded away from both zero and one. This is the first result to locate the exact satisfiability threshold in a random constraint satisfaction problem exhibiting the condensation phenomenon identified by Krz̧akała et al. [Proc Natl Acad Sci 104(25):10318–10323, 2007 ]. Our proof verifies the one-step replica symmetry breaking formalism for this model. We expect our methods to be applicable to a broad range of random constraint satisfaction problems and combinatorial problems on random graphs.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-015-2492-8