Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps

We prove that every geometric Lorenz attractor satisfying a strong dissipativity condition has superpolynomial decay of correlations with respect to the unique Sinai–Ruelle–Bowen measure. Moreover, we prove the central limit theorem and almost sure invariance principle for the time-1 map of the flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2015-12, Vol.340 (3), p.901-938
Hauptverfasser: Araújo, V., Melbourne, I., Varandas, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every geometric Lorenz attractor satisfying a strong dissipativity condition has superpolynomial decay of correlations with respect to the unique Sinai–Ruelle–Bowen measure. Moreover, we prove the central limit theorem and almost sure invariance principle for the time-1 map of the flow of such attractors. In particular, our results apply to the classical Lorenz attractor.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-015-2471-0