Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps
We prove that every geometric Lorenz attractor satisfying a strong dissipativity condition has superpolynomial decay of correlations with respect to the unique Sinai–Ruelle–Bowen measure. Moreover, we prove the central limit theorem and almost sure invariance principle for the time-1 map of the flow...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2015-12, Vol.340 (3), p.901-938 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every geometric Lorenz attractor satisfying a strong dissipativity condition has superpolynomial decay of correlations with respect to the unique Sinai–Ruelle–Bowen measure. Moreover, we prove the central limit theorem and almost sure invariance principle for the time-1 map of the flow of such attractors. In particular, our results apply to the classical Lorenz attractor. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-015-2471-0 |