Connection Problems for Quantum Affine KZ Equations and Integrable Lattice Models

Cherednik attached to an affine Hecke algebra module a compatible system of difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2015-09, Vol.338 (3), p.1363-1409
1. Verfasser: Stokman, Jasper V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cherednik attached to an affine Hecke algebra module a compatible system of difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bases for different asymptotic sectors gives rise to a Weyl group cocycle, which we compute explicitly in terms of theta functions. For the spin representation of the affine Hecke algebra of type C , the quantum affine KZ equations become the boundary qKZ equations associated to the Heisenberg spin- 1 2 XXZ chain. We show that in this special case the results lead to an explicit 4-parameter family of elliptic solutions of the dynamical reflection equation associated to Baxter’s 8-vertex face dynamical R -matrix. We use these solutions to define an explicit 9-parameter elliptic family of boundary quantum Knizhnik–Zamolodchikov–Bernard (KZB) equations.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-015-2375-z