Connection Problems for Quantum Affine KZ Equations and Integrable Lattice Models
Cherednik attached to an affine Hecke algebra module a compatible system of difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bas...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2015-09, Vol.338 (3), p.1363-1409 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cherednik attached to an affine Hecke algebra module a compatible system of difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bases for different asymptotic sectors gives rise to a Weyl group cocycle, which we compute explicitly in terms of theta functions.
For the spin representation of the affine Hecke algebra of type
C
, the quantum affine KZ equations become the boundary qKZ equations associated to the Heisenberg spin-
1
2
XXZ chain. We show that in this special case the results lead to an explicit 4-parameter family of elliptic solutions of the dynamical reflection equation associated to Baxter’s 8-vertex face dynamical
R
-matrix. We use these solutions to define an explicit 9-parameter elliptic family of boundary quantum Knizhnik–Zamolodchikov–Bernard (KZB) equations. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-015-2375-z |