A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts

Given a resistor network on Z d with nearest-neighbor conductances, the effective conductance in a finite set with a given boundary condition is the minimum of the Dirichlet energy over functions with the prescribed boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2014-06, Vol.328 (2), p.701-731
Hauptverfasser: Biskup, M., Salvi, M., Wolff, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a resistor network on Z d with nearest-neighbor conductances, the effective conductance in a finite set with a given boundary condition is the minimum of the Dirichlet energy over functions with the prescribed boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective conductance scaled by the volume of the box converges to a deterministic limit as the box-size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate. More general domains, boundary conditions and ellipticity contrasts will be addressed in a subsequent paper.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-2024-y