The 1/N Expansion of Tensor Models Beyond Perturbation Theory
We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mi...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2014, Vol.330 (3), p.973-1019 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/
N
plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/
N
into a simple combinatorial problem of counting trees decorated by a finite number of loop edges.
As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the
N
→ ∞ limit, in the universality class of Gaussian tensor models. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-014-1907-2 |