Liouville-Type Theorems for the Forced Euler Equations and the Navier–Stokes Equations
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in R N . If we assume “single signedness condition” on the force, then we can show that a C 1 ( R N ) solution ( v , p ) with | v | 2 + | p | ∈ L q 2 ( R N ) , q ∈ ( 3 N N - 1...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2014-01, Vol.326 (1), p.37-48 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in
R
N
. If we assume “single signedness condition” on the force, then we can show that a
C
1
(
R
N
)
solution (
v
,
p
) with
|
v
|
2
+
|
p
|
∈
L
q
2
(
R
N
)
,
q
∈
(
3
N
N
-
1
,
∞
)
is trivial,
v
= 0. For the solution of the steady Navier–Stokes equations, satisfying
v
(
x
)
→
0
as
|
x
|
→
∞
, the condition
∫
R
3
|
Δ
v
|
6
5
d
x
<
∞
, which is stronger than the important D-condition,
∫
R
3
|
∇
v
|
2
d
x
<
∞
, but both having the same scaling property, implies that
v
= 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215,
2007
), using the self-similar Euler equations directly. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-013-1868-x |