Quantum Hypothesis Testing for Gaussian States: Quantum Analogues of χ2, t-, and F-Tests

We consider quantum counterparts of testing problems for which the optimal tests are the χ 2 , t -, and F -tests. These quantum counterparts are formulated as quantum hypothesis testing problems concerning Gaussian state families, and they contain nuisance parameters, which have group symmetry. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2013-03, Vol.318 (2), p.535-574
Hauptverfasser: Kumagai, Wataru, Hayashi, Masahito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider quantum counterparts of testing problems for which the optimal tests are the χ 2 , t -, and F -tests. These quantum counterparts are formulated as quantum hypothesis testing problems concerning Gaussian state families, and they contain nuisance parameters, which have group symmetry. The quantum Hunt-Stein theorem removes some of these nuisance parameters, but other difficulties remain. In order to remove them, we combine the quantum Hunt-Stein theorem and other reduction methods to establish a general reduction theorem that reduces a complicated quantum hypothesis testing problem to a fundamental quantum hypothesis testing problem. Using these methods, we derive quantum counterparts of the χ 2 , t -, and F -tests as optimal tests in the respective settings.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-013-1678-1