On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on with the fractional Laplacian (−Δ) α as dispersive symb...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2013-02, Vol.317 (3), p.563-591 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice
with mesh size
h
> 0. In the continuum limit when
h
→ 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on
with the fractional Laplacian (−Δ)
α
as dispersive symbol. In particular, we obtain that fractional powers
arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian −Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions).
Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-012-1621-x |