A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations
We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂ x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schr...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2011-11, Vol.307 (3), p.629-673 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂
x
in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with periodic boundary conditions, so KAM tori and thus quasi-periodic solutions are obtained for them. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-011-1353-3 |