On the Self-Similar Solutions of the 3D Euler and the Related Equations
We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on as...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2011-07, Vol.305 (2), p.333-349 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on asymptotically self-similar singularities. We also present progress towards relaxation of the decay condition near infinity for the vorticity of the blow-up profile to exclude self-similar blow-ups. The case of the generalized Navier-Stokes equations having the laplacian with fractional powers is also studied. We apply the similar arguments to the other incompressible flows, e.g. the surface quasi-geostrophic equations and the 2D Boussinesq system both in the inviscid and supercritical viscous cases. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-011-1266-1 |