On the Self-Similar Solutions of the 3D Euler and the Related Equations

We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2011-07, Vol.305 (2), p.333-349
1. Verfasser: Chae, Dongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on asymptotically self-similar singularities. We also present progress towards relaxation of the decay condition near infinity for the vorticity of the blow-up profile to exclude self-similar blow-ups. The case of the generalized Navier-Stokes equations having the laplacian with fractional powers is also studied. We apply the similar arguments to the other incompressible flows, e.g. the surface quasi-geostrophic equations and the 2D Boussinesq system both in the inviscid and supercritical viscous cases.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-011-1266-1