Reiterated Ergodic Algebras and Applications
We redefine the homogenization algebras without requiring the separability assumption. We show that this enables one to treat more complicated homogenization problems than those solved by the previous theory. In particular we exhibit an example of algebra which, contrary to the algebra of almost per...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2010-12, Vol.300 (3), p.835-876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We redefine the homogenization algebras without requiring the separability assumption. We show that this enables one to treat more complicated homogenization problems than those solved by the previous theory. In particular we exhibit an example of algebra which, contrary to the algebra of almost periodic functions, induces no homogenization algebra. We prove some general compactness results which are then applied to the resolution of some homogenization problems related to the generalized Reynolds type equations and to some nonlinear hyperbolic equations. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-010-1127-3 |