Asymptotic Heat Kernel Expansion in the Semi-Classical Limit

Let , where L is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and V is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of as . As a consequence we get an asymptotic expansion for the quantum partit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2010-03, Vol.294 (3), p.731-744
Hauptverfasser: Bär, Christian, Pfäffle, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let , where L is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and V is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of as . As a consequence we get an asymptotic expansion for the quantum partition function and we see that it is asymptotic to the classical partition function. Moreover, we show how to bound the quantum partition function for positive by the classical partition function.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-009-0973-3