Asymptotic Heat Kernel Expansion in the Semi-Classical Limit
Let , where L is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and V is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of as . As a consequence we get an asymptotic expansion for the quantum partit...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2010-03, Vol.294 (3), p.731-744 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
, where
L
is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and
V
is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of
as
. As a consequence we get an asymptotic expansion for the quantum partition function and we see that it is asymptotic to the classical partition function. Moreover, we show how to bound the quantum partition function for positive
by the classical partition function. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-009-0973-3 |