Feynman Graphs, Rooted Trees, and Ringel-Hall Algebras
We construct symmetric monoidal categories of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of , are dual to the corresponding Connes-Kreimer Hopf algebras...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2009-07, Vol.289 (2), p.561-577 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct symmetric monoidal categories
of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of
,
are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation of the Connes-Kreimer Lie algebras on rooted trees and Feynman graphs as Ringel-Hall Lie algebras. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-008-0694-z |