Feynman Graphs, Rooted Trees, and Ringel-Hall Algebras

We construct symmetric monoidal categories of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of , are dual to the corresponding Connes-Kreimer Hopf algebras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2009-07, Vol.289 (2), p.561-577
Hauptverfasser: Kremnizer, Kobi, Szczesny, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct symmetric monoidal categories of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of , are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation of the Connes-Kreimer Lie algebras on rooted trees and Feynman graphs as Ringel-Hall Lie algebras.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0694-z