Hölder Continuity of the Rotation Number for Quasi-Periodic Co-Cycles in

We prove two results on the rotation number of the skew-product system where ω is Diophantine and is homotopic to the identity. On the one hand, we prove that this function has the behavior of a Hölder function. On the other, we show that the length of the gaps has a sub-exponential estimate which d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2009-04, Vol.287 (2), p.565-588
1. Verfasser: Hadj Amor, Sana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove two results on the rotation number of the skew-product system where ω is Diophantine and is homotopic to the identity. On the one hand, we prove that this function has the behavior of a Hölder function. On the other, we show that the length of the gaps has a sub-exponential estimate which depends on its label given by the gap-labeling theorem. We give also an estimate of the complement of the spectrum. These results are obtained by studying the reducibility of the quasi-periodic co-cycle ( ω , A ).
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0688-x