Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1

For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p -norms. Equivalently, for all p  > 1, the minimum output Rényi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Rény...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2008-11, Vol.284 (1), p.263-280
Hauptverfasser: Hayden, Patrick, Winter, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p -norms. Equivalently, for all p  > 1, the minimum output Rényi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Rényi entropy of order p for a product channel need not be significantly greater than the minimum output entropy of its individual factors. Since p  = 1 corresponds to the von Neumann entropy, these counterexamples demonstrate that if the additivity conjecture of quantum information theory is true, it cannot be proved as a consequence of any channel-independent guarantee of maximal p -norm multiplicativity. We also show that a class of channels previously studied in the context of approximate encryption lead to counterexamples for all p  > 2.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0624-0