A Spinor Approach to Walker Geometry

A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2008-09, Vol.282 (3), p.577-623
Hauptverfasser: Law, Peter R., Matsushita, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski [11] and Plebañski [30] in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0561-y