Integral Formulas for the Asymmetric Simple Exclusion Process

In this paper we obtain general integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice with nearest neighbor hopping rates p to the right and q = 1− p to the left. For the most part we consider an N -particle system but for certain of these formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2008-05, Vol.279 (3), p.815-844
Hauptverfasser: Tracy, Craig A., Widom, Harold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain general integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice with nearest neighbor hopping rates p to the right and q = 1− p to the left. For the most part we consider an N -particle system but for certain of these formulas we can take the limit. First we obtain, for the N -particle system, a formula for the probability of a configuration at time t , given the initial configuration. For this we use Bethe Ansatz ideas to solve the master equation, extending a result of Schütz for the case N = 2. The main results of the paper, derived from this, are integral formulas for the probability, for given initial configuration, that the m th left-most particle is at x at time t . In one of these formulas we can take the limit, and it gives the probability for an infinite system where the initial configuration is bounded on one side. For the special case of the totally asymmetric simple exclusion process (TASEP) our formulas reduce to the known ones.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0443-3