An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials

Closed microwave digestion and a high-pressure asher have been evaluated for wet-oxidation and extraction of lead, cadmium, chromium, and mercury from a range of typical packaging materials used for food products. For the high-pressure asher a combination of nitric and sulfuric acids was efficient f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fresenius' journal of analytical chemistry 2001-05, Vol.370 (1), p.76-81
Hauptverfasser: PERRING, Loïc, ALONSO, Marie-Isabelle, ANDREY, Daniel, BOURQUI, Bernard, ZBINDEN, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Closed microwave digestion and a high-pressure asher have been evaluated for wet-oxidation and extraction of lead, cadmium, chromium, and mercury from a range of typical packaging materials used for food products. For the high-pressure asher a combination of nitric and sulfuric acids was efficient for destruction of a range of packaging materials; for polystyrene, however, nitric acid alone was more efficient. For microwave digestion, a reagent containing nitric acid, sulfuric acid, and hydrogen peroxide was used for all materials except polystyrene. Use of the high-pressure asher resulted in the highest recoveries of spiked lead (median 92%), cadmium (median 92%), chromium (median 97%), and mercury (median 83%). All samples were spiked before digestion with 40 microg L(-1) Cd, Cr, and Pb and 8 microg L(-1) Hg in solution. The use of indium as internal standard improved the accuracy of results from both ICP-MS and ICP-AES. Average recovery of the four elements from spiked packaging materials was 92 +/- 14% by ICP-MS and 87 +/- 15% (except for mercury) by ICP-AES. For mercury analysis by CVAAS, use of tin(II) chloride as reducing agent resulted in considerably better accuracy than use of sodium borohydride reagent.
ISSN:0937-0633
1432-1130
DOI:10.1007/s002160100716