Numerical solution of a bending-torsion model for elastic rods
Aiming at simulating elastic rods, we discretize a rod model based on a general theory of hyperelasticity for inextensible and unshearable rods. After reviewing this model and discussing topological effects of periodic rods, we prove convergence of the discretized functionals and stability of a corr...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2020-12, Vol.146 (4), p.661-697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at simulating elastic rods, we discretize a rod model based on a general theory of hyperelasticity for inextensible and unshearable rods. After reviewing this model and discussing topological effects of periodic rods, we prove convergence of the discretized functionals and stability of a corresponding discrete flow. Our experiments numerically confirm thresholds, e.g., for Michell’s instability, and indicate a complex energy landscape, in particular in the presence of impermeability. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-020-01156-6 |