Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems

A family of any order finite volume (FV) schemes over quadrilateral meshes is analyzed under the framework of Petrov–Galerkin method. By constructing a special mapping from the trial space to the test space, a unified proof for the inf–sup condition of any order FV schemes is provided under a weak c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2015-06, Vol.130 (2), p.363-393
Hauptverfasser: Zhang, Zhimin, Zou, Qingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A family of any order finite volume (FV) schemes over quadrilateral meshes is analyzed under the framework of Petrov–Galerkin method. By constructing a special mapping from the trial space to the test space, a unified proof for the inf–sup condition of any order FV schemes is provided under a weak condition that the underlying mesh is an h 1 + γ , γ > 0 parallelogram mesh. The optimal convergence rate of FV solutions is then obtained with well-known techniques.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-014-0664-7