Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems
A family of any order finite volume (FV) schemes over quadrilateral meshes is analyzed under the framework of Petrov–Galerkin method. By constructing a special mapping from the trial space to the test space, a unified proof for the inf–sup condition of any order FV schemes is provided under a weak c...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2015-06, Vol.130 (2), p.363-393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A family of any order finite volume (FV) schemes over quadrilateral meshes is analyzed under the framework of Petrov–Galerkin method. By constructing a special mapping from the trial space to the test space, a unified proof for the inf–sup condition of any order FV schemes is provided under a weak condition that the underlying mesh is an
h
1
+
γ
,
γ
>
0
parallelogram mesh. The optimal convergence rate of FV solutions is then obtained with well-known techniques. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-014-0664-7 |