The stability of barycentric interpolation at the Chebyshev points of the second kind

We present a new analysis of the stability of the first and second barycentric formulae for interpolation at the Chebyshev points of the second kind. Our theory shows that the second formula is more stable than previously thought and our experiments confirm its stability in practice.We also extend o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2014-10, Vol.128 (2), p.265-300
1. Verfasser: Mascarenhas, Walter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new analysis of the stability of the first and second barycentric formulae for interpolation at the Chebyshev points of the second kind. Our theory shows that the second formula is more stable than previously thought and our experiments confirm its stability in practice.We also extend our current understanding regarding the accuracy problems of the first barycentric formula.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-014-0612-6