A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format

In the present survey, we consider a rank approximation algorithm for tensors represented in the canonical format in arbitrary pre-Hilbert tensor product spaces. It is shown that the original approximation problem is equivalent to a finite dimensional ℓ 2 minimization problem. The ℓ 2 minimization p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2012-11, Vol.122 (3), p.489-525
Hauptverfasser: Espig, Mike, Hackbusch, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present survey, we consider a rank approximation algorithm for tensors represented in the canonical format in arbitrary pre-Hilbert tensor product spaces. It is shown that the original approximation problem is equivalent to a finite dimensional ℓ 2 minimization problem. The ℓ 2 minimization problem is solved by a regularized Newton method which requires the computation and evaluation of the first and second derivative of the objective function. A systematic choice of the initial guess for the iterative scheme is introduced. The effectiveness of the approach is demonstrated in numerical experiments.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-012-0465-9