An error estimate for the finite difference approximation to degenerate convection–diffusion equations

We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection–diffusion equations in one space dimension, and prove an L 1 error estimate. Precisely, we show that the difference between the approximate solution and the unique entropy solution converges at a ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2012-06, Vol.121 (2), p.367-395
Hauptverfasser: Karlsen, K. H., Koley, U., Risebro, N. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection–diffusion equations in one space dimension, and prove an L 1 error estimate. Precisely, we show that the difference between the approximate solution and the unique entropy solution converges at a rate , where is the spatial mesh size. If the diffusion is linear, we get the convergence rate , the point being that the is independent of the size of the diffusion.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-011-0433-9