An error estimate for the finite difference approximation to degenerate convection–diffusion equations
We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection–diffusion equations in one space dimension, and prove an L 1 error estimate. Precisely, we show that the difference between the approximate solution and the unique entropy solution converges at a ra...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2012-06, Vol.121 (2), p.367-395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection–diffusion equations in one space dimension, and prove an
L
1
error estimate. Precisely, we show that the
difference between the approximate solution and the unique entropy solution converges at a rate
, where
is the spatial mesh size. If the diffusion is linear, we get the convergence rate
, the point being that the
is independent of the size of the diffusion. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-011-0433-9 |