Error estimates for the numerical approximation of a quaslinear Neumann problem under minimal regularity of the data

The finite element based approximation of a quasilinear elliptic equation of non monotone type with Neumann boundary conditions is studied. Minimal regularity assumptions on the data are imposed. The consideration is restricted to polygonal domains of dimension two and polyhedral domains of dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2011, Vol.117 (1), p.115-145
Hauptverfasser: Casas, Eduardo, Dhamo, Vili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite element based approximation of a quasilinear elliptic equation of non monotone type with Neumann boundary conditions is studied. Minimal regularity assumptions on the data are imposed. The consideration is restricted to polygonal domains of dimension two and polyhedral domains of dimension three. Finite elements of degree k  ≥ 1 are used to approximate the equation. Error estimates are established in the L 2 (Ω) and H 1 (Ω) norms for convex and non-convex domains. The issue of uniqueness of a solution to the approximate discrete equation is also addressed.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-010-0344-1