Convergence analysis of the high-order mimetic finite difference method

We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2009-09, Vol.113 (3), p.325-356
Hauptverfasser: Beirão da Veiga, L., Lipnikov, K., Manzini, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-009-0234-6