Piecewise linear approximations in nonconvex nonsmooth optimization

We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2009-07, Vol.113 (1), p.73-88
Hauptverfasser: Gaudioso, M., Gorgone, E., Monaco, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by solving a quadratic program aiming at maximizing the difference between the lower and the upper model. A proximal approach is used to guarantee convergence to a stationary point under the hypothesis of weak semismoothness.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-009-0228-4