Piecewise linear approximations in nonconvex nonsmooth optimization
We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by s...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2009-07, Vol.113 (1), p.73-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by solving a quadratic program aiming at maximizing the difference between the lower and the upper model. A proximal approach is used to guarantee convergence to a stationary point under the hypothesis of weak semismoothness. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-009-0228-4 |